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Many familiar distributions are special cases, including the exponential (P = 1) and
chi-squared (A = 3, P = n/2). The Erlang distribution results if P is a positive integer.
The mean is P/A, and the variance is P/A2.

3.4.6. THE BETA DISTRIBUTION

Distributions for models are often chosen on the basis of the range within which the
random variable is constrained to vary. The lognormal distribution, for example, is
sometimes used to model a variable that is always nonnegative. For a variable con-
strained between 0 and ¢ > 0, the beta distribution has proved useful. Its density is
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This functional form is extremely flexible in the shapes it will accommodate. It is sym-
metric if @ = B, asymmetric otherwise, and can be hump-shaped or U-shaped. The |
mean is ca/(a + B), and the variance is c2af/[(@ + B + 1)(a + B)?]. The beta distrib-
ution has been applied in the study of labor force participation rates.”

(3-40) |

3.4.7. THE LOGISTIC DISTRIBUTION

The normal distribution is ubiquitous in econometrics. But researchers have found
that for some microeconomic applications, there does not appear to be enough mass
in the tails of the normal distribution; observations that a model based on normality
would classify as “unusual” seem not to be very unusual-at all. One approach has been
to use thicker-tailed symmetric distributions. The logistic distribution is one candidate;
the cdf for a logistic random variable is denoted

1
1+ex

The density is f(x) = A(x)[1 — A(x)]. The mean and variance of this random variable
are zero and 7%3.

Fx) = Alx) =

3.4.8. DISCRETE RANDOM VARIABLES

Modeling in economics frequently involves random variables that take integer values.

In these cases, the distributions listed thus far only provide approximations that are
sometimes quite inappropriate. We can build up a class of models for discrete random
variables from the Bernoulli distribution for a single binomial outcome (trial) J

Prob(x = 1) = a,
Prob(x =0) =1 — q,

where 0 = a = 1. The modeling aspect of this specification would be the assumptions
that the success probability « is constant from one trial to the next and that successive
trials are independent. If so, then the distribution for x successes in # trials is the bino-
mial distribution,

Prob(X = x) = (Z)a"(l -a), x=0,1,...,n

"Heckman and Willis (1976).
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The mean and variance of x are na and na(l ~ ), respectively. If the number of trials
becomes large at the same time that the success probability becomes small so that
the mean na is stable, the limiting form of the binomial distribution is the Poisson

(P=1) and
sitive integer.

distribution,
e A\
in which the Prob(X = x) = T
* example, is ¥
rariable con- The Poisson distribution has seen wide use in econometrics in, for example, modeling
lensity is patents, crime, recreation demand, and demand for health services.
(3-40)
- 3.5. The Distribution of a Function of a Random Variable
e. -
Shapt;;sr}lr_r}?e We considered finding the expected value of a function of a random variable. It is
beta distrib- fairly common to analyze the random variable itself, which results when we compute
a function of some random variable. There are three types of transformation to con-
sider. One discrete random variable may be transformed into another, a continuous
variable may be transformed into a discrete one, and one continuous variable may be
have found transform.ed into anoth.er. . _ ' .
nough mass The simplest case is tbe first one. The probabll}t.les asso'cmtec! with the new vari-
o normality able are clzomputed according to the 1aw§ ‘of probability. If y is derived from x gnd the
ch has been function is one to one, then tl.le probability that Y = y(x) equals the prqbablllty that
+ candidate: X = x.If several values of x yield the same value of y, then Prob(Y = y) is the sum of
’ the corresponding probabilities for x.

The second type of transformation is illustrated by the way individual data on in-
come are typically obtained in a survey. Income in the population can be expected to
be distributed according to some skewed, continuous distribution such as the one

m variable shown in Figure 3.1.

Data are normally reported categorically, as shown in the lower part of the figure.
Thus, the random variable corresponding to observed income is a discrete transforma-
tion of the actual underlying continuous random variable. Suppose, for example, that

ger values the transformed variable y is the mean income in the respective interval. Then
1 that are Prob(Y = p,) = P(—* < X =< a),
te random Prob(Y = u,) = P(a < X = b),
1) Prob(Y = p,) = P(b < X < ¢),
and so on, which illustrates the general procedure.

If x is a continuous random variable with pdf f,(x) and if y = g(x) is a continuous
sumptions monotonic function of x, then the density of y is obtained by using the change of vari-
successive able technique to find the cdf of y:

.the bino-

b
Prob(yb) = f_ @O 187 () | dy-
This equation can now be written as

Prob(yb) = J_b wfy(y) dy.
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Thus, in our examples, ¥2 is O(1/n), Var[x, ] is O(1/n?) and o(1/n), S, is O(n*) (8 = =2
in this case), log L() is O(n) (6 = —1), and ¢, is O(1) (8 = 0). Important particular cases
that we will encounter repeatedly in our work are sequences for which 8 = 1 or —1.

The notion of order of a sequence is often of interest in econometrics in the con-
text of the variance of an estimator. Thus, we see in Section 4.4.3 that an important el-
ement of our strategy for forming an asymptotic distribution is that the variance of
the limiting distribution of \n(x, — w)lois O(1). In Example 4.17, the variance of m,
is the sum of three terms that are O(1/n), O(1/n%), and O(1/n*). The sum is 0O(1/n), be-
cause nVar[m,] converges to w, — o*, the numerator of the first, or leading term,
whereas the second and third terms converge to zero. This term is also the dominant
term of the sequence. Finally, consider the two divergent examples in the preceding
list. S, is simply a deterministic function of n that explodes. However, log L(6) = nlog
§ — 63,x, is the sum of a constant that is O(n) and a random variable with variance
equal to n/6. The random variable “diverges” in the sense that its variance grows with-
out bound as » increases.

5. Efficient Estimation: Maximum Likelihood

The principle of maximum likelihood provides a means of choosing an asymptotically
efficient estimator for a parameter or a set of parameters. The logic of the technique
is best illustrated in the setting of a discrete distribution. Consider a random sample
of 10 observations from a Poisson distribution: 5,0,1,1,0,3,2,3,4,and 1. The density
for each bbservation is

-0pgx;

i

flx;, 0) =

Since the observations are independent, their joint density, which was identified in
Section 4.3.2 as the likelihood for the sample, is

10
oy, X5 o - - , X10] 0) = Hlf(x"’ 6)
-
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The last line gives the probability of observing this particular sample, assuming that a
Poisson distribution with as yet unknown parameter ¢ generated the data. What value
of 8 would make this sample most probable? Figure 4.6 plots this function for various
values of 6. It has a single mode at # = 2, which would be the maximum likelihood es-
timate, or MLE, of 6.

Consider maximizing the function directly. Since the log function is monotonically
increasing and easier to work with, we usually maximize In L(6) instead:

in L(§) = — 106 + 201n  — 12.242,

Anl®) _ 45,2 _gsp-2
do 0

Il

i
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L(8]x) X 107 In L{B}x) + 25
0.13 — 26
012} 24
0.11F —22
0.10 —20
0.09 - P
0.08 |- Liojx) —— 16
0.07 - —14
0.06 - —12
0.05 - -{10
In L(B]x) —

d’In L@  —20
do? 6>

The solution is the same as before. Figure 4.6 also plots the log of L to illustrate the
result.

In a continuous distribution, the analogy to the probability of observing the given
sample is not exact, since a particular sample has probability zero. The principle is the
same for either, however. The joint density of the n observations, which may be uni-
variate (x,) or multivariate (x,), is the product of the individual densities. This joint

< (0 => this is a maximum.
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L{6]x) + 25
— 26 density is the likelihood function, defined as a function of the unknown parameter
vector, 6:
—24 n
X,...,Xn,oz x'90
s ) =117, 0 s
22 = L(8]X),
where X is used to indicate the sample data. It is usually simpler to work with the log
20 of the likelihood function:
18 In L(6|X) = X Inf(x;, 0). (4-44)
i=1
116 The values of the parameters that maximize this function are the maximum likelihood
estimates, generally denoted 8. Since the logarithm is a monotonic function, the values
that maximize L are the same as those that maximize In L. The likelihood function
114 and its logarithm, evaluated at 6, are usually denoted L and In L, respectively. The
necessary condition for maximizing In L(6)is
12 9 1n L(6)
—=0. 4-45
20 (4-45)
-1 10
This is called the likelihood equation.
8 ~EXAMPLE 4.18 Poisson Likelihood Function
1 In sampling from a Poisson population,
In L(§) = —n6 + (In 6) > oxi - Y, In(x!),
- 4 i=1 i=1
oinL 1 & A
L@ 1 gmi, -
a0 05
- 2
~ g ~ EXAMPLE 4.19 Likelihood for the Normal Distribution
. In sampling from a normal distribution with mean p and variance o?, the log-
likelihood function and the likelihood equations for u and ¢? are
1 n - 2
In L(g, 0%) = — —In@2m) — ~Ino® == 3, —ﬁ——z—“)— . (4-46)
2 2 2 i=1 o
alnL 1 &
=— > Ex-mw=0, (4-47)
op 0 =1
dlnL n 1 <
lustrate the 902 =-S5 7t 2ot 21 (xi — w)?=0. (4-48)

To solve the likelihood equations, multiply (4-47) by o and solve for /i, then insert
this solution in (4-48) and solve for o2.The solutions are

ng the given
nciple is the
may be uni-
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1 n
I’LMLZ—Exi:xn
noi=1




150 CHAPTER 4 Statistical Inference

H, is rejected if 6, exceeds the upper limit or is less than the lower limit. Equivale
H,is rejected if

b — 6,
se(f)
In words, the hypothesis is rejected if the estimate is too far from 6, where the

tance is measured in standard error units. The critical value is taken from the ¢ or sta
dard normal distribution, whichever is appropriate.

> Cl—a/2'

EXAMPLE 4.33 Testing a Hypothesis About a Mean with a Confidence Interval
For the results in Example 4.29, test Hy:u = 1.98 versus Hj:p # 1.98, assuming sam
’ pling from a normal distribution:
_|Eo 198 ‘ _ | 163 - 198
| sHn | 0102

The 95 percent critical value for ¢(24) is 2.064. Therefore, reject H,. If the cr
value for the standard normal table of 1.96 is used instead, then the same result is o

tained.

= 3.43.

If the test is one-sided, as in
Hy:0= 6, ,
H:6<86,, -
then the critical region must be adjusted. Thus, for this test, H, will be rejected if 2

point estimate of 6 falls sufficiently below 6,. (Tests can usually be set up by departi
from the decision criterion, “What sample results are inconsistent with the hypoth§

sis?”)

EXAMPLE 4.34 One-Sided Test About a Mean
A sample of 25 from a normal distribution yields ¥ = 1.63 and s = 0.51. Test
Hyp =15,
H:p>15.
Clearly, no observed X less than or equal to 1.5 will lead to rejection of H,,. Using thg
borderline value of 1.5 for u, we obtain
Jn(®@ — 1.5) . 5(1.63 - 1.5)
s 0.51

This is approximately 0.11. This value is not unlikely by the usual standards. Hence, a
a significant level of 0.11, we would not reject the hypothesis. 4

Prob( ) = Prob(z,, > 1.27).

4.9.3. THREE ASYMPTOTICALLY EQUIVALENT TEST PROCEDURES
The next several sections will discuss the most commonly used test procedures: thej
likelihood ratio, Wald, and Lagrange multiplier tests. [Extensive discussion of thesg
procedures is given in Godfrey (1988).] We consider maximum likelihood estimatiof
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of a parameter 6 and a test of the hypothesis H,:c(6) = 0. The logic of the tests can
be seen in Figure 4.8.2! The figure plots the log-likelihood function In L(6), its deriva-
tive with respect to 6, d In L(6)/d6, and the constraint c(6). There are three ap-
proaches to testing the hypothesis suggested in the figure:

o Likelihood ratio test. If the restriction c() = 0 is valid, then imposing it should not
lead to a large reduction in the log-likelihood function. Therefore, we base the test on

InL(8
din L(8/d 8
c(6)
dinL(d/d 6
—
INnLx-—-————¢-——————~————— ==
Likelihood
ratio
Inlypf-m==——--
Lagrange
multiplier
0 ~ ~ 0
/ eR BMLE

%gee Buse (1982). Note that the scale of the vertical axis would be different for each curve. As such, the
points of intersection have no significance.
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the difference,In L — In L, where L is the value of the likelihood function at the un
constrained value of 6 and L, is the value of the likelihood function at the restricte

estimate.

e Wald test. If the restriction is valid, then c(8,,, ;) should be close to zero
since the MLE is consistent. Therefore, the test is based on ¢y, ). We re-
ject the hypothesis if this is significantly different from zero.

* Lagrange multiplier test. If the restriction is valid, then the restricted esti-
mator should be near the point that maximizes the log likelihood. There-
fore, the slope of the log-likelihood function should be near zero at the re-
stricted estimator. The test is based on the slope of the log-likelihood at the
point where the function is maximized subject to the restriction.

These three tests are asymptotically equivalent under the null hypothesis, bu
they can behave rather differently in a small sample. Unfortunately, their small-sam:
ple properties are unknown, except in a few special cases. As a consequence, th
choice among them is typically made on the basis of ease of computation. The likeli
hood ratio test requires calculation of both restricted and unrestricted estimators. |
both are simple to compute, then this way to proceed is convenient. The Wald test re
quires only the unrestricted estimator, and the Lagrange multiplier test requires onl
the restricted estimator. In some problems, one of these estimators may be much eas
ier to compute than the other. For example, a lincar model is simple to estimate bul
becomes nonlinear and cumbersome if a nonlinear constraint is imposed. In this cas
the Wald statistic might be preferable. Alternatively, restrictions sometimes amount
the removal of nonlinearities, which would make the Lagrange multiplier test the sim
pler procedure.

4.9.3.a. The likelihood Ratio Test
Let @ be a vector of parameters to be estimated, and let H| specify some sort o
restriction on these parameters. Let 8, be the maximum likelihood estimate of @ ob
tained without regard to the constraints, and let 6, be the constrained maximum like
lihood estimator. If L, and L, are the likelihood functions evaluated at these two est

mates, then the likelihood ratio is

o

R .
Ly
This function must be between 0 and 1. Both likelihoods are positive, and L, canno
be larger than L. (A restricted optimum is never superior to an unrestricted one.)
A is too small, then doubt is cast on the restrictions.

An example from a discrete distribution helps to fix these ideas. In estimatin
from a sample of 10 from a Poisson distribution at the beginning of Section 4.5, w
found the MLE of the parameter 6 to be 2. At this value, the likelihood, which is th
probability of observing the sample we did, is 0.104 X 10-8. Are these data consiste
with Hy:0 = 1.8? L, = 0.936 X 107, which is, as expected, smaller. This particul
sample is somewhat less probable under the hypothesis.

The formal test procedure is based on the following result.

THEOREM 4.20: Distribution of the Likelihood Ratio Test Statistic. Under regularity,
the large sample distribution of —2 In A is chi-squared, with degrees of freedom equal to’
the number of restrictions imposed.

A=

’i
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The null hypothesis is rejected if this value exceeds the appropriate critical value
from the chi-squared tables. Thus, for the Poisson example,

0.0936
= 0.21072.
0.104 ) 021072

—2InA= —2111(

om is not significant at any conven-

This chi-squared statistic with one degree of freed
is that # = 1.8 on the basis of this

t-22

It is tempting to use the likelihood ratio test to test a simple nuil hypothesis
against a simple alternative. For example, we might be interested in the Poisson set-
ting in testing Hy: 0 = 1.8 against H,:0 = 2.2. But the test cannot be used in this fash-
ion. The degrees of freedom of the chi-squared statistic for the likelihood ratio test
equals the reduction in the number of dimensions in the parameter space that results
from imposing the restrictions. In testing 2 simple null hypothesis against a simple al-
ternative, this value is zero.?® Second, one gsometimes encounters an attempt to test

inst another with a likelihood ratio test; for exam-

one distributional assumption agar
ple, a certain model will be estimated assuming a normal distribution and then assum-

ing a ¢ distribution. The ratio of the two likelihoods is then compared to determine
which distribution is preferred. This comparison is also inappropriate. The parameter
spaces, and hence the likelihood functions of the two cases, are unrelated.

tes

4.9.3.b.The Wald Test

A praéﬁcal shortcoming of the likelihood ratio test is that it usually requires esti-
mation of both the restricted and unrestricted parameter vectors. In complex models,
one or the other of these estimates may be very difficult to compute. Fortunately,
there are two alternative testing procedures, the Wald test and the Lagrange multi-
plier test, that circumvent this problem. Both tests are based on an estimator that is

asymptotically normally distributed.
These two tests are based on the distribution of the full rank quadratic form con-

sidered at the end of Section 3.10.5. Specifically,
Tf x ~ N[, %], then (x — w1 x - p)~ chi-squaredJ |. (4-61)

In the setting of a hypothesis test, under the hypothesis that E (x) = m, the quadratic ..

form has the chi-squared distribution. If the hypothesis that E(x) = p is false, how-
ever, then the quadratic form just given will, on average, be larger than it would be if
the hypothesis were true.2* This condition forms the basis for the test statistics dis-

cussed in this and the next section.
Let  be the vector of parameter estimates obtained without restrictions. We hy-

pothesize a set of restrictions
H,c(0) = q-

use of the large-sample result in a sample of 10 might be questionable.

220)f course, OUr
his instance, there is nothing to prevent ~21n A from

BNote that because both likelihoods are restricted in t
being negative.

241f the mean is not g, then the statistic in (4-61) will have a noncentral chi-squared distribution. This distri-

bution has the same basic shape as the central chi-squared distribution, with the same degrees of freedom,
but lies to the right of it. Thus, a random draw from the noncentral distribution will tend, on average, to be

larger than a random observation from the central distribution.




