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Abstract 
 
 
 
 
 
 
 
 
 
 
 
 

According to modern theories of stellar evolution, white dwarves are the last 
stage of evolution for all stars with less than 4 times the mass of the sun. These stars 
are in an equilibrium state, between the force of gravity pulling inward, and the 
pressure from degenerate electrons pushing outward. In 1931 Chandrasekhar 
showed that as a white dwarf became more massive, and the electrons that 
supported its weight became relativistic, there would be a point beyond which the 
degeneracy pressure would be insufficient to support the star. This mass is 
approximately 1.4 times the mass of the sun, it is known as the Chandrasekhar limit. 
 

In this paper I will discuss the history of the discovery, and its importance in 
astrophysics, then derive in detail the Chandrasekhar limit, including some of the 
refinements that have been made since Chandrasekhar's original paper.    
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Section I - History 
 

This section will discuss the events leading up to the discovery of the 
Chandrasekhar limit. This will begin with a brief historical account of 
Chandrasekhar's life, in order to appreciate how his work influenced modern 
science. 

 
Subrahmanyan Chandrasekhar, known to many as Chandra, was born in 

Lahore on October 19th, 1910. He was the eldest son of C.S. Ayyar, his father, and 
Sitalakshmi, his mother. When Chandra was six, the family moved to Lucknow, in 
northern India. Two years later, when his father became deputy accountant-general, 
they moved again, this time to Madras.  

 
Chandra's parents began his education at home, at age five. This was 

common among middle and upper class families, since the schools were very poor. 
He did not attend formal school until 1921, when he was eleven. He was accepted 
into the third year of high school, skipping two full years. The Hindu High School 
he attended was considered the best school in Madras. Chandra did extremely well 
in high school, and became a freshman at the Presidency College in Madras at only 
fifteen years of age. He was considered a prodigy, especially in mathematics. His 
private studies in mathematics put him far ahead of his classmates, and he 
invariably received the highest grade in the class. In college he studied physics, 
chemistry, English, and Sanskrit. He found himself drawn most to physics, and 
English. 
 

 After completing his intermediate two years with distinction in physics, 
chemistry, and mathematics, his next step was to work toward a B.A. honors 
degree. Chandra's first choice was mathematics. However his father insisted on 
physics, seeing no future in mathematics. When school started, he became a physics 
honors student, but he attended lectures in the mathematics department. He studied 
the prescribed physics texts on his own, and took all the required tests. 
 

In 1928, after completing the first year of the three year honors program, 
Chandra went to work in his uncle's laboratory. His uncle, Raman, known for 
discovering the Raman effect in the molecular scattering of light, wanted to give his 
nephew a start in experimental physics. Chandra was to assist in an experiment on 
X-ray diffraction by liquids. After only a week, however, Chandra had broken the 
apparatus, and it was decided that his future did not lie in experimental physics. 
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During the beginning of his second year of honors studies Arnold 

Sommerfeld came to Presidency college to give a lecture. Chandra spoke to 
Sommerfeld after the lecture, and was informed that much of the physics he had 
learned had been changed by new developments due to Heisenberg, Dirac, Pauli, 
and others. Sommerfeld left Chandra with some unpublished material of his, on the 
theory of electrons in metals. Chandra immediately launched into a study of the new 
material. In a few months Chandra had written a paper of his own, The Compton 
Scattering and the New Statistics. He felt that the paper was good enough to 
publish, so he contacted Ralph Howard Fowler, a Fellow with the Royal Society. 
Fowler had applied the new Fermi-Dirac statistics to an entirely different area - 
astrophysics, specifically to white dwarf stars. In the future Fowler's paper was to 
have a great impact on Chandra's life and career. In 1929 Chandra heard back from 
Fowler, and after a few minor changes, the paper was published in the Proceedings 
of the Royal Society later that year. 
 

During his final undergrad year, Werner Heisenberg came to Madras. 
Chandra was in charge of the visit, and spent the day showing him around. This 
gave Chandra the chance to discuss his ideas, and led to Chandra meeting many 
important people in his field. 
 

Chandra received a full scholarship to Cambridge, that had been created 
specifically for him. The only stipulation was that Chandra had to agree to return to 
India. Chandra considered not going, because of his mother's ill-health, but she 
encouraged him to go. He left from Bombay on July 31st 1930. Just before he 
departed, he had completed a paper. In it he had developed further Fowler's theory 
of white dwarves. 
 

At this point it is appropriate to pause, and take a look at the developments in 
the theory of white dwarves that had taken place prior to Chandra's involvement. 
Between 1834 and 1844, the astronomer and mathematician F. W. Bessel found that 
the star Sirius had wavy irregularities in its motion through space.1 He concluded 
that it had an invisible companion revolving about it with a period of about 50 
years. It failed to show itself, however, until January 1862, when the discovery was 
made by Alvan G. Clark, using an 18 1/2-inch refracting telescope, then the largest 
refractor in the world.2 The companion, now called Sirius B, was found to be 
magnitude 8.65. This meant that although it had a mass comparable to the sun, its 
luminosity was less than 1/400th that of the sun. The abnormally low luminosity 
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might be explained in two ways, either by an extremely low surface temperature, 
which would imply a low surface brightness, or by an unusually small diameter. 
The spectrum of the star was difficult to determine due to the proximity of Sirius. In 
the absence of other evidence, it was generally supposed that the star must be cool, 
since a diameter small enough to explain the observed luminosity would imply a 
density 125,000 times greater than water. This was, at the time, considered 
impossible. 
 

In 1915 the mystery deepened. Walter S. Adams announced, that as the 
companion passed to the furthest distance from the primary in its 49 year orbit, he 
had succeeded in securing a spectrogram with the Cassegrain reflector at Mt. 
Wilson.3 It showed a spectrum identical to Sirius. Since stars were known to 
radiate, to a fair approximation, like black bodies, with temperatures well correlated 
with color, the dimness of Sirius B could not be explained as low surface 
brightness. Although some suggested that it might be reflected light from Sirius, 
Adams pointed out that a similar star had been found with no companion. Some 
months earlier, the Danish astronomer Ejnar Hertzsprung had discovered that 
Omicron-2 Eridani was under-luminous in much the same way.  

 
In 1916 the Estonian astrophysicist, Ernest J. Opik calculated the mean 

density for 40 stars.4 He noted that Omicron-2 Eridani seemed to have a density of 
25,000 times that of water, but also noted that this was "impossible". 
 

Finally in 1924 Eddington speculated that such densities might be possible 
for ionized material, since the electrons that marked the boundary of the atom were 
not present.5 He contacted Waler Adams at Mt. Wilson, and asked him to measure 
the radial velocity of Sirius B, with the aim of determining the density by measuring 
the relativistic shift in the spectral lines. Fifteen months later, in 1925, Adams 
published his conclusions, which supported a very high density for Sirius-B. 
 

However, this presented another problem. Since the star could only exist this 
way in an ionized state, and since it was thought that as it cooled it must return to 
the form of ordinary matter, the star would need to expand as it cooled. The star 
would need energy to cool. 
 

An answer came in 1926, when Fowler pointed out that using the newly 
discovered quantum statistics, even an absolutely cold assembly of electrons, 
confined to a finite volume would have a finite pressure.6 Then, in 1930, Milne 
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showed that this zero-point pressure can balance a cold star against gravity, at a 
uniquely determined radius that corresponds well with the actual sizes of white 
dwarves. 
 

It is at this point that Chandra came into the picture. He had combined 
Fowler's ideas with Eddington's work on stellar bodies in equilibrium between 
gravity and their own internal pressure, and had obtained a more detailed picture of 
a white dwarf star. He concluded that the central density of such a star would be 
about six times its average density. Then during the long trip from India to England 
it occurred to him that at such high densities relativistic effects might be important. 
He quickly found that this was indeed the case. Chandra began working, expecting 
to find a relativistic generalization of Fowler's theory. But, to his surprise he found 
something totally different. He found that there was a limit to the mass of a star that 
would evolve into a white dwarf. This limit involved only fundamental constants 
and the average molecular weight of the stellar material. He resolved to write a 
paper on the results, and discuss it with Fowler at the earliest opportunity. He knew 
that a great deal of work would be necessary to understand the result fully, and to 
establish it on firm ground. 
 

When Chandra got to London there was a great deal of confusion about his 
admission. Fowler, with whom he had had prior communications, was away in 
Ireland. He was finally admitted 2 1/2 weeks later on the strength of a personal 
recommendation from Fowler. He later realized how fortunate it was for him that he 
had written to Fowler, two years before. Without him, he probably never would 
have been admitted. 
 

On October 2nd, Chandra met with Fowler to present him with the two 
papers he had written. The first paper, which was an extension of Fowler's work, 
impressed him very much, however, he was unsure of Chandra's paper that included 
relativistic effects, and said that he would send the paper to Edward Arthur Milne. 
Fowler also advised Chandra as to which classes would be most valuable to him, 
including a class in quantum mechanics taught by Paul Dirac. He did attend this 
class, and also a class on Relativity, taught by Eddington.  
 

Chandra came to know Dirac quite well. Dirac became Chandra's advisor 
when Fowler took a sabbatical at the end of Chandra's second term. Dirac often 
came to Chandra's room for tea on Sunday's, and they got in the habit of taking long 
walks together on the old Roman roads. Dirac did not have much interest in 
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astrophysics, and so, was not of much help to Chandra in his work. Chandra 
continued to do research on his own however, and submit papers for publication. 
His work won him election to the "Sheep Shanks Exhibition", a special award given 
each year to one candidate in astrophysics. 
 

About this time Chandra began communications with Milne. Although he 
had received no response to his paper on the critical mass of white dwarves, Milne 
was quite receptive to his subsequent work on stellar atmospheres and relativistic 
ionization. He soon developed a strong rapport with Milne, and collaboration and 
joint publication was suggested. 
 

It was also during his first year that Chandra was introduced to the meetings 
of the Royal Astronomical Society (RAS) by Fowler. These meetings were an 
important part of Chandra's career at Cambridge. He was asked several times to 
present his work to the society. 
 

Chandra made few friends at Cambridge, being much too busy most of the 
time for socializing. Two exceptions to this rule however, were Chowla, and Harold 
Grey. Chowla was another student from India, who shared Chandra's work ethic. 
Harold Grey was a physicist who was involved in a pacifist movement that was 
sympathetic to Gandhi's struggle for Indian independence. Grey provided Chandra 
with a link to the world of pure physics. 
 

Chandra was also very strict about his diet in England. He insisted on 
remaining vegetarian, although he did start eating eggs. He found the non-meat diet 
in England extremely bland and very limited. 

 
On May 21st, 1931, Chandra received news from his father, that his mother 

had passed away. Chandra was very upset by the news, and being so far from home 
made things worse for him. On May 28th he wrote to his father: "Time helps to heal 
wounds ever so sore they may be. That appears to me the tyrannous aspect of time. 
However I have consoled myself sufficiently to begin the daily work."7 In fact 
Chandra had had his first meeting with Eddington the day after he had received the 
news. 

 
In order to help himself recover he thought a change of scenery would help. 

So, he choose to go to Gottingen, Germany, where he studied at the Institut fur 
Theoretische Physik, with Max Born as its director. There, among other things he 
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studied quantum mechanics with Born, and wrote two papers that summer. 
 

He also visited Potsdam Observatory, in the suburbs of Berlin, and met 
Erwin Finlay Freundlich, who was at the time a well known astrophysicist. He was 
surprised to find that Freundlich recognized him, and knew of his work. In fact 
Freudlich invited him to be a guest lecturer. 

 
In September Chandra returned to Cambridge. He immediately sent the paper 

on stellar coefficients of absorption that he had written in Germany, to Milne and 
the Royal Astronomical Society.  
 

On November 12th, 1931, Milne contacted him about his paper. It was very 
much a continuation of Milne's own work, and he suggested that they work together 
on another paper. In December he presented this paper to the RAS, and received 
high compliments. 
 

Chandra had ended up doing astrophysics by accident, and was becoming 
disheartened with the subject. Although Chandra felt that he had discovered 
something important in his work on the limiting mass of degenerate stars, he was 
not receiving positive feedback. He had always wanted to study pure math, however 
he felt that was impractical. Thus, he decided to focus his efforts on pure physics.  
He read some papers by Pauli and Heisenberg, and talked with Dirac, who advised 
him to go to Copenhagen to study with Niels Bohr. Chandra did just that in August, 
1932. 
 

Chandra enjoyed Copenhagen, and worked on a problem in physics that had 
been suggested by Dirac. In October he wrote a paper entitled "On the Statistics of 
Similar Particles", and sent it to Dirac. Both Bohr and Rosenfeld approved the 
paper, and it was sent to the RAS for publication. However, that winter Dirac 
discovered an error, and the paper had to be withdrawn. 
 

About this time Milne was visiting from Cambridge. They discussed Milne's 
work on the equilibrium of rotating gas spheres, and Chandra was soon able to 
write a paper on the subject, which Milne agreed to report to the RAS. Also, about 
that time Chandra received an invitation to lecture at the University of Liege, 
Belgium, on various topics in astrophysics. In February he gave his six lectures, he 
was honored with a bronze medal, and urged to publish his lectures in the academy 
of Sciences proceedings. This returned Chandra fully to the world of Astrophysics. 
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In March Chandra returned to Cambridge, because his thesis was due in June. 

He spent his time working on a series of papers on distorted polytropes, which was 
more than adequate material for his thesis. 
 

Chandra was not totally happy about the results of his trip to Denmark. He 
went there to make a change, but was forced to return to astrophysics. However, he 
realized that some things had to be done in order to further his career. He was 
becoming very concerned about what his future held. The government scholarship 
was almost over, and according to the agreement, he must return to India. He 
wanted to find a place in India where he could continue the research he wanted. 
However, such positions did not exist unless they were specially created, and the 
Director of Public Instruction, who had promised to create a position for him, was 
no longer in charge. 
 

He wrote to the Director to seek an extension of the scholarship, but had no 
success. He became determined to extend his stay in Europe. 
 

Chandra turned his thesis in to Fowler on May 17, 1933. Fowler did not even 
glance at it, but told him to bring it to the Registrar, saying he had full confidence in 
Chandra's work. 
 

The oral examination was a mere formality, as he had already presented a 
summary of his work to the RAS. Fowler and Eddington were his examiners, they 
did manage to worry him somewhat, but Chandra passed easily. 
 

It was suggested that Chandra might try to apply for a fellowship at Trinity 
College. However, since it was open to candidates from all fields, the competition 
was quite severe. Never-the-less, it would solve his problem, so he applied. 
 

On October 9, 1933 the notice was posted listing the fellowship recipients. 
Chandra's name was on the list, much to his surprise. Later, Milne disclosed to him, 
that he had been called in as a referee. Although, he made it clear that Chandra's 
work had got him the position, not Milne's influence.  
 

Chandra was elated, this meant at least three more years in Europe. The 
fellowship was actually for four years, but the last year could be spent anywhere. 
Chandra's father was not entirely pleased with his decision to stay in Europe, but he 
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adjusted to the idea. Then, he decided to visit Europe himself. Chandra was not 
totally pleased with the idea, and tried to discourage him, but his father was not 
easily discouraged. 
 

His father visited and toured Europe for six months, and although the visit 
went well, Chandra was glad when it was over. 
 

For the time being Chandra stopped thinking about changing fields. He was 
formally admitted to the RAS. He had previously only attended as the guest of other 
members. 
 

The seating was hierarchical. with senior members like Eddington and Jeans 
in front. Chandra got to sit in the last row. He often wondered what would happen if 
he should sit in front. 
 

In 1934, Chandra got the opportunity to visit Russia. He traveled by boat to 
Leningrad, and he clearly remembers the numbers of German warships seen on the 
way. In Leningrad he gave two lectures at the Pulkovo Observatory, to large 
audiences. One lecture was on white dwarves. A friend he had made there, Viktor 
Ambartsumian encouraged him to look into the matter in more detail, by 
eliminating some approximations. Chandra was encouraged, and did just that. 

 
A year later Chandra was distressed to hear that all the Russian scientists had 

been sent to Siberia, or killed. Ambartsumian, it turns out had been lucky and 
escaped, and Chandra got to meet him again in 1981, at a symposium in Russia. 
 

He returned full of determination. He spent the next few months doing 
detailed calculations, in order to obtain an exact theory. He proved beyond any 
reasonable doubt, that the limit on the mass of a star that could become a white 
dwarf was unavoidable. 

Chandra also hoped that his work would help to resolve a long standing 
conflict between Eddington and Milne. Eddington's standard model considered the 
surface of the star to be of little importance, compared to the center. And the model 
assumed a zero temperature at the star's surface, for simplicity. Milne argued that 
the surface may be important, and that the star may not be a perfect gas throughout. 
Since Eddington would have nothing to do with these ideas, Milne went on to form 
more extreme models which required every star to have a degenerate core. With this 
 in mind, Milne was unwilling to judge Chandra's work on its own merit, looking 
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instead for verification of his own ideas. 
 

Since his work was being ignored in England, Chandra published in the 
Astrophysical Journal of America. Chandra knew that his results showed all of 
Milne's work to be wrong, so he kept quite about it, in general. 
 

In 1932, Chandra was visiting Copenhagen. There Leon Rosenfeld urged 
Chandra to publish his work. Knowing of Milne's objections, Chandra decided to 
send his article to Potsdam to be published in the Zeitschift fur Astrophysik. 
Unfortunately, Milne was visiting Potsdam at the time, and was asked to review the 
paper. He did not recommend its publication until Chandra had written him a long 
letter of explanation. 
 

For the next two years he worked on other problems, since there 
seemed to be little interest in his result. In 1934, however he felt ready to tackle the 
problem again, this time removing as many assumptions as he possibly could. 
Eddington took much interest in his work at this point. Chandra assumed at the 
time, that this was because his results would prove Eddington correct, and Milne 
wrong. As it turned out Eddington thought that the precise formula would eliminate 
the collapse. 
 

At the end of 1934, Chandra submitted two papers on his results to the RAS, 
and he was scheduled to deliver his papers at the next meeting. He discovered a 
couple of days in advance that Eddington would be giving a paper on "Relativistic 
Degeneracy" immediately after his. This was somewhat annoying, since Eddington 
had said nothing about it. 
 

After Chandra gave his paper, Eddington said that he believed that what 
Chandra had proved was that the relativistic degeneracy formula must be wrong, 
since stars should not behave in this absurd way. And he went on to give his ideas 
on how the formula might be wrong.  
 

Chandra felt humiliated. Months of work had been swept aside as being 
fundamentally in error. And, of course, because of Eddington's authority, most 
believed that Chandra must have been wrong. 
 

Chandra decided to try to get a definitive statement from a leader in quantum 
physics, that the formula he had used was the correct one. He wrote to Rosenfeld in 



 
 13 

Copenhagen, and asked him to speak to Bohr. Rosenfeld wrote back, that Bohr had 
looked at it, and that they had both agreed, that the formula used was definitely 
correct. 
 

Armed with this Chandra tried various arguments to try to convince 
Eddington, but nothing worked, and some people urged him to just drop the matter. 
 

Chandra wrote again to Rosenfeld, and asked if Bohr could read his paper, 
and make a definitive statement. Bohr responded that he was currently too busy, but 
that he should send the paper to Pauli. Chandra did this, and Pauli agreed that there 
was nothing wrong with the formula, but he was also unwilling to get involved in 
the conflict. Writing to Dirac produced similar results. 
 

Meanwhile Eddington was continuing to attack his work. In 1935 Eddington 
gave an hour long talk to the International Astronomical Union, and devoted most 
of it to saying that Chandra was wrong. Chandra asked to respond, but his request 
was denied. 
 

Eddington's arguments tended to shift back and forth, as various points were 
made, but he continued to believe that there was no limiting mass. 
 

Chandra didn't know what to do. He had planned on working out theories for 
rotation, and other things, but felt a lack of enthusiasm now, since his results would 
not be taken seriously. 
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In 1939, both were invited to speak at an international meeting in Paris, on 
white dwarves and novae. Chandra gave his talk first, followed by Eddington the 
next day. At one point Chandra became very angry over a comment Eddington 
made. Eddington later apologized, but Chandra was still rather unhappy about it. 
 

As it turned out, this was their last meeting. Eddington died in 1944. Chandra 
later said that he regretted not being more forgiving the last time they met. In spite 
of the professional disagreement, they had remained friends. 
 

Some think that the theories of white dwarves, neutron stars, and black holes, 
could have been as much as 20 years further along, if Eddington had excepted 
Chandra's ideas, but it is impossible to tell what really would have happened. 
 

Chandra moved on, and pursued other things, and eventually the scientific 
community realized he was right. In 1983 he was given the Nobel prize for his 
work.             
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Section II - Qualitative Discussion 
 

Modern theories suggest that white dwarf stars are the final state for most 
stars. A star spends most of its existence in a state of equilibrium, between the 
gravitational force, trying to pull it together, and the thermal pressure from the 
nuclear reactions at its core, trying to push it apart. When its nuclear fuel is 
exhausted, it must contract. The end product of this collapse, for low mass stars is a 
white dwarf. White dwarves themselves can be no more massive than 1.4 times the 
mass of the sun. However, it is believed that the progenitor star can be as much as 4 
times as massive as the sun, because during the end of their nuclear fuel burning 
stage most stars eject a large portion of their mass. In the case of low mass stars, 
this leads to a planetary nebula. A small minority of stars, that are more massive 
than 4 times the mass of the sun, will probably not end up as a white dwarf. These 
stars collapse even further, becoming neutron stars, or black holes. Their final 
moments as "normal" stars are more spectacular as well. Most of them, it is 
believed, will finish their lives in a supernova explosion. Some of our basic 
knowledge about white dwarves is summarized in this section. 
 

White dwarves have very small diameters, closer to the size of planets, than 
that of normal stars. Sirius B has a diameter of 19,000 miles, compared to the 
earth's diameter of 7900 miles. The smallest white dwarves yet observed are 
believed to have diameters in the range of 1000 miles.  
 

White dwarves are under-luminous compared to normal stars. Sirius B has an 
absolute magnitude of 11.4 or 435 times fainter then our sun's magnitude of 4.8. 
White dwarves range in magnitude from about 9.0 to 16.0. The brightest known is 
approximately 8.9 or only about 1/40th of the sun's brightness. The dimmest may be 
fainter than 17th magnitude, or about 100,000 times fainter than the sun. 
 

White dwarves have a wide range of temperatures, from 70,000 K to less 
than 5000 K, although most fall between 8000 and 10,000 K, giving them a white 
spectrum of class A. This is the origin of the name "white dwarf". The coolest white 
dwarf yet discovered is type K. No type M stars have been found. This has 
implications for the age of the universe, since the coolest white dwarves are 
believed to be the remains of the first stars formed. There may be no class M white 
dwarves, because no stars have yet had time to cool that much. 
 

The masses of white dwarves have only been determined accurately in three 
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binary systems. These are: Sirius B, 40 Eridani B, and Procyon B. They have 
masses of 0.98, 0.44, 0.65 solar masses respectively. The masses of other white 
dwarves have been estimated by theoretical models. The most massive are about 1.2 
solar masses. The least massive are about 0.2 solar masses. 
 

The densities of white dwarves are, of course, very high. Sirius B has a 
density of about 125,000 g/cm3. The densest may be as much as 10,000 times 
denser than this. The most dense materials on earth are only about 20 g/cm3. This is 
why the idea was initially regarded with skepticism. These densities would be 
unexplainable, without knowledge of quantum mechanics, and the structure of the 
atom. 
 

White dwarves are sometimes found with planetary nebulae around them. 
And, almost all planetary nebulae are observed to have white dwarves at their 
center. Planetary nebulae got their name from the fact that when they were found, 
they looked similar to the planet Uranus through a telescope. A planetary nebula is 
the remains of the outer layers of the star that formed the white dwarf. The current 
theory for their formation says that when the outer layers of a red giant predecessor 
become cool enough for ionized atoms to recombine, the star's outer layers become 
unstable. The instability occurs because the temperature for the reaction is 
borderline, and the recombination releases energy. So, the outer layers contract, and 
expand, becoming warmer and cooler, and eventually the layers are ejected into 
space, forming a nebula. The nebula is visible because it is heated by ionizing 
radiation, from the hot central star. They tend to appear as rings around the stars, 
but are really semi-transparent shells, that totally surround the stars. Most nebulae 
are less than 50,000 years old, which fits in well with theories of their formation. 
 

Spectroscopic studies of white dwarves are difficult to interpret. The stars are 
surrounded by a non-degenerate layer, which may be 50 to 60 miles thick, and 
above that is a layer of atmosphere, only about 100 feet thick. This is the only area 
observable spectroscopically. Also making things more difficult, the huge surface 
gravity, often more than 50,000 times that of earth, produces spectral peculiarities, 
such as a widening of the lines, often 20 to 50 Angstroms at half the central line 
depth. 
 

The most common type observed is type DA. About 2/3 of white dwarves 
fall into this category. Their spectra show only one type of line, the hydrogen 
Balmer series of lines.  These stars have been explained as having "settled". That is, 
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the heaver elements have sunk lower in the star, leaving only hydrogen at the 
surface. 

 
The formation of other types of white dwarves has not been satisfactorily 

explained. Type DB white dwarves, about 8% of all white dwarves, show only 
helium lines. They are also among the hottest of all white dwarves. This seems to 
indicate that their predecessor stars ejected all of their hydrogen, although no 
correlation between type DB stars, and planetary nebulae has been found. Also, 
these stars may be related to other types of hydrogen deficient stars that have been 
observed. 
 

Type DC stars, about 14% of the total, show no lines at all. It has been shown 
that if a star's outer layer were pure helium, as it cooled the helium lines would 
disappear. Thus, DC stars may be cooled type DB stars. Also extreme widening of 
the bands has been mentioned as a possible way of explaining the absence of all 
lines. 
 

The other categories of white dwarves are rarer, together only about 12% fall 
into these categories. Type DF stars have hydrogen and calcium lines at 
temperatures above 8000K, but below 8000K only a few lines of calcium and 
magnesium show. These stars may have been more evolved than other stars, and 
had heavier elements in their cores. Type DG stars are similar to type DF stars, but 
show lines of iron and calcium. These stars tend to be some of the coolest white 
dwarves. Some other stars show a band at 4670 Angstroms, this has been attributed 
to the carbon molecule, C2. Others show an unidentified line at 4135 Angstroms. 
Also, two stars show emission lines, which are of interest, since one of them, WZ 
Sagittae, is known to be a recurrent nova. 
 

Novae are associated with white dwarf stars in binary systems. Material from 
the normal companion star falls onto the surface of the white dwarf. After enough is 
built up, a run-away nuclear reaction takes place, briefly brightening the star by 
several orders of magnitude. 
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Some other interesting, resent discoveries about white dwarves include: A 
discovery that at the pressures and temperatures found in the cores of cooler white 
dwarves, carbon will form a crystal lattice of ions, with the degenerate electrons 
moving freely about. These stars would be, almost literally "diamonds in the sky"8. 
 The light from some white dwarves is circularly polarized, this is an indicator of a 
strong magnetic field. The field strengths seem to be in the range of 106 to 108 
gauss. A type of white dwarf known as a ZZ Ceti star, has been observed to 
oscillate. The periods of these oscillations are on the order of a few hundred to a 
few thousand seconds. ZZ Ceti stars have temperatures of 10,000K to 14.000K, and 
it is interesting to note that this occurs in the same instability zone as Cephid 
variables, when extrapolated into the region of white dwarves. 
 

Only a few hundred white dwarves are known because they are very faint 
objects, but the numbers that are observed fit in well with theories of stellar death 
rates. The search continues for more of these objects, and the known white dwarves 
are intensely studied. They continue to be among the most interesting objects in 
astrophysics.   
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The first step in deriving the limit is to arrive at a relation between pressure 
and density for fermions, beginning with the Fermi-Dirac function. 
     
(3.1) 
 
 
 
This expression gives the probability of a quantum state being occupied, for ideal 
fermions. Here  k is the Boltzmann constant, T is the temperature, E is the total 
energy of the quantum state, and mu is the chemical potential, defined by, 
 
 
(3.2) 
 
 
Where n is the number density, epsilon is the total energy density, V is the volume, 
and S is the entropy. It is important to note here that both E and epsilon refer to the 
total energy, including the rest mass, defined by, 
 
 
(3.3) 
 
 
Here c is the speed of light and p is the momentum of the particle. This is important 
because relativistic velocities will be discussed in the derivation. 

 
At low densities and high temperature Eq. (3.1) reduces to the Maxwell-

Boltzmann distribution, 
 
 
(3.4) 
 
 
However in the low temperature case, as T approaches zero, mu is called the 
Fermi energy EF , and the probability of a state being occupied is given by, 
 
(3.5) 

 

1+)/kT)-((E
1

=f(E)
µexp

 

 

)
n

(= VS,∂
∂εµ  

)cm+cp(=E 1/24222  

)
kT

E-
(f(E)

µ
exp≈  

)E>E(0,)f(E)EE1,(f(E) FF ≈≤≈  



 
 19 

Now, the number density of quantum sites in a very small region of phase 
space can be given by, 
 
 
(3.6) 
 
 
Where pi is the total number in phase space. 
 

Since h3 is the volume of a cell in phase space, where h is Plank's constant, 
the probability of a cell being occupied can be expressed as, 
 
 
(3.7)  
  
 
Where g is the multiplicity factor that gives the number of quantum states 
corresponding to a given momentum. For electrons g = 2s+1= 2 where s is the spin 
(1/2).  
 

Eq.(3.7) is equal to Eq. (3.1) since both are the probability of a state being 
occupied. The distribution function can be described either as a function of E, or as 
a function of p, since E and p are related by Eq.(3.3). 
 

The number density in real space can be found by integrating over all 
momenta. 
 
 
(3.8) 
 
 
Or, using eq(3.7),  equivalently by, 
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where dp is the volume element in momentum space. 
 

 The energy density of the gas can be found by taking the energy of a particle 
in a specific state, multiplying by the probability of the state being occupied, and 
integrating over all phase space. 
 
 
(3.10) 
 
Or alternately by, 
 
 
(3.11) 
 
 

Now, since pressure is a momentum flux, it can be written, 
 

 
(3.12) 
 
 
The < >'s indicate an average over all particles, and the factor of 1/3 arises from 
isotropy, that is <vxpx> = <vypy> = <vzpz>. Here v is the velocity, given by v = 
pc2/E. Also eq.(3.12) can be derived using two basic equations from 
thermodynamics, P = nkT, where again n is the number density,  and 3kT/2 = 
mv2/2, where m is the particle's mass.  

 
Now using eq.(3.8), the pressure can be written as, 

 
 
(3.13) 
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(3.14) 
 

Now if it is assumed for simplicity that T = 0 , and that the particles involved 
are ideal fermions, these equations can be integrated. From eqs.(3.5) and (3.9), and 
using g = 2 for electrons, the result is, 
 
 
(3.15) 
 
 
Here pF is the Fermi momentum, defined by, 
 
 
(3.16) 
 
 

If mB is defined as the mean baryon rest mass, Ye as the mean number of 
electrons per baryon, and ne as the electron number density, and assuming the mass 
is due almost entirely to baryons, the rest mass density is defined as, 
 
 
(3.17) 
 
 
Note that rho0 is not a costant. Now, substituting eq.(3.15) into eq.(3.17) gives, 
 
 
(3.18) 
 
 

Now the pressure can be found using eqs.(3.5) and (3.14), 
 
 
(3.19) 
 
 
In the non-relativistic case p=mev and the pressure can be given by, 
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(3.20) 
 
 
In the ultra-relativistic case v=c and the pressure can be given as, 
 
 
(3.21) 
 
 

Now using eq(3.18) with eqs.(3.20) and (3.21) the relation between density 
and pressure can be expressed. In order to emphasize this relationship, it is put into 
polytropic form. This form is explained in detail in Appendix  A. In this form, the 
pressure is given as, 
 
 
(3.22) 
 
 
In the non-relativistic case, 
 
 
(3.23a) 
 
 

and, 
 
 
(3.23b) 
 
 
And, in the ultra relativistic case, 
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(3.24b) 

 
 

The next step after arriving at the pressure-density relation, is to find the 
relation between density and the radial distance from the center of the star. To start, 
consider a spherical shell inside a star, with radius r, thickness dr, density  
rho0, and mass interior to the shell m(r). The gravitational force on this shell is, 
 
 
(3.25) 
 
 

Now, let dP be the pressure difference across dr, then the force due to the 
pressure supporting the shell is, 
 
 
(3.26) 
 
 
Using the negative sign to indicate that it apposes the gravitational force. 
 
Equating eq.(3.25) and eq.(3.26) gives, 
 
 
(3.27) 
 
 
This is the equation of hydrostatic equilibrium. 
 

Now, m(r) can be given by, 
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(3.29) 
 
 
 
Eq.(3.27) can be re-written as, 
 
 
(3.30) 
 
 
Now substituting eq.(3.30) into eq.(3.29) gives, 
 
 
(3.31) 
 
 
or, 
 
 
(3.32) 
 
 
This is a density - radius relation, that involves pressure.  
 

The next step is to take the pressure - density relation, eq.(3.22), and 
substitute it in to eq.(3.32), in order to get a density - radius relationship. The result 
is, 
 
 
(3.33) 
 
 
This is a second degree differential equation for the density. It can be solved with 
the boundary conditions: rho0 = rhoc, the central density, at r=0, and rho0 = 0 at r=R, 
the surface of the star. The next step will be to put the equation into dimensionless 
form. First let, 
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(3.34) 
 
 
 
Then eq.(3.33) becomes, 
 
 
(3.35) 
 
 
Now let, 
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Then eq(3.35) becomes, 
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(3.40) 
 
 
and, 
 
(3.41) 
 
 
Eq.(3.39) becomes, 
 
 
(3.42) 
 
 
 
This is known as the Lane-Emden equation of index n. A more extensive discussion 
of these functions is given in appendix B. For now it is enough to state that for n<5 
the equations have a zero at a finite value xi=xi1. Since from eq.(3.36), theta is 
related to the density (rho0), the  first zero theta is a zero density, and therefore 
represents the surface of the star. The particular values needed are from eqs.(3.23b) 
and (3.24b), 
 
 
(3.43) 
 
 
and, 
 
 
(3.44) 
 
 
The last values in these sets will be used later in eq.(3.50). With these values it is 
possible to write values for the mass, M, and radius, R,  of the star in terms of the 
central density, rhoc, and then to write the relationship between mass and radius. 
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(3.45) 
 
and from eq.(3.28), 
 
(3.46) 
 
 
Now using eq.(3.36), 
 
 
(3.47) 
 
 
and using eq.(3.41), 
 
 
(3.48) 
 
 
Finally using eq.(3.42), gives, 
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or, 
 
 
(3.50) 
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Then from eq.(3.45), 
 
 
(3.52) 
 
 
and, from eq.(3.50) and eq.(3.51), 

 
 
(3.53) 
 
 
and finally, using eq.(3.52) and eq.(3.53), 
 
 
(3.54) 
 
 

This is a very important result. It says that the mass of the star is inversely 
proportional to the volume of the star. So as mass is added to the star it will shrink. 
As it does so the space available to the electrons will decrease, and because of the 
uncertainty principle their momentum must increase. Eventually, they will approach 
the speed of light, and the ultra-relativistic approximation is appropriate. From 
eq.(3.40), in the ultra-relativistic case, where gamma = 4/3, and n = 3, 
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This result says that as the electrons become more relativistic, the radius 

becomes more sensitive to changes in mass. When a critical mass is reached, the 
radius will become zero, unless other forces stop the collapse . This is the 
Chandrasekhar limit. Specifically, starting with eq.(3.50) and using eq.(3.44), 
 
 
(3.57) 
 
 
And using eq.(3.40) gives, 
 
 
(3.58) 
 
 
Finally, using eq.(3.24a), with Ye = 1/2, which is a good estimate for matter evolved 
to helium, and beyond, and using the values, 
 
mB = 1.66057*10-24 g 
c = 3*1010 cm 
G = 6.670*10-8 dynes*cm2/g2 
h = 6.62*10-27 erg*sec 
MSolar= One solar mass = 1.989*1033 g 
 
The result is, 
 
 
(3.59)     MCh = 1.46 MSolar    
 
 
This is the Chandrasekhar limit. 
 

The equation of state represented by eqs.(3.22), (3.23), and (3.24), is the 
equation that was used by Chandrasekhar in his pioneering analysis. Although it 
correctly predicts the collapse of the star, other refinements made since then have 
changed the exact value of the limiting mass, and the description of the star at lower 
masses. The two most important of these are the electrostatic correction, and the 
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correction for inverse beta decay. These are discussed in Section V. Some of the 
other approximations that were made in the derivation, are explained as follows: 
In arriving at eq.(3.15), T is set to 0. This is justified for a number of reasons. First, 
this is the expected end state of the star, so this is just considering the simplest case 
first. Second, at very high densities the thermal pressure is small compared to that 
of the electron degeneracy pressure. An order of magnitude argument is as follows: 
The thermal energy is 
given as, 
 
(3.60) 
 
 
where k, again, is the Boltzmann constant, k = 1.67*10-24 g/cm3, and T has been 
estimated at T = 10,000 K. At low energies, the energy due to degeneracy can be 
given as, 
 
 
(3.61) 
 
 
Where me is the electron mass, me = 9.11*10-28 g. Now since PF can be estimated 
using the uncertainty principle as, 
 
 
(3.62) 
 
 
However, a more precise value is obtained from eq.(3.15), where 
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(3.64) 
 
 
Where ne  has been estimated as 5.99*1029 cm-3, which corresponds to a density of  
106 g/cm3. So by comparing eq.(3.64) to eq.(3.60), the degeneracy energy is about 
1013 times larger than the thermal energy. 

 
Another approximation is made in arriving at eq.(3.17). It is assumed that all 

of the mass of the star is in the form of baryons, i.e. protons and neutrons. This is 
justified because the baryon mass, mB, is about 1800 times larger than the electron 
mass, me. This also justifies the assumption that the degeneracy pressure is due 
entirely to the electrons. From eq.(3.64), the baryon energy would be, 
 
  
 
(3.65) 
 
 
or about 1100 times smaller than the electron energy. Here nB is the baryon number 
density, estimated at approximately twice the electron number density. At very high 
energies eq.(3.61) is no longer true, and the baryons do begin to provide a larger 
fraction of the pressure. This is discussed more in Section V. Finally, the star 
considered was non-rotating and had no magnetic field. This, of course, was done 
to limit the problem to the simplest case. 
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Section IV -A Simple Argument for the Existence of a Limit 
 

This section gives a simple argument for the existence of the Chandrasekhar 
Limit. 
 

Using eqs. (3.63) and (3.3) the Fermi energy can be written as, 
 
 
(4.1) 
 
 
Now, taking the electron density as, 
 
 
 (4.2) 
 
 
where Ne is the total number of electrons in the star,  
 
 
(4.3) 
 
 
The gravitational energy can be written as, 
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where NB is the total number of baryons in the star. Now using, 
 
 (4.6) 
 
 
the total energy can be written as, 
 
  
 
(4.7) 
 
 

This equation can be studied to see the nature of the equilibrium, which will 
occur at a minimum value of ET. If Ne is small, so that ET is positive, then ET can be 
decreased by increasing R. This will happen until the electrons become non-
relativistic and eq.(4.7), becomes invalid. However if Ne is large enough that ET is 
negative, then the energy can only be decreased by decreasing R, and the star will 
contract to a point, if it is not stopped by other for 
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Section V - Improvements to the Basic Model 
 

The most important improvement to Chandrasekhar's original work is the 
electrostatic correction. The major part of this correction arises because the protons 
are not evenly distributed throughout the star, but instead are grouped together into 
nuclei. A short discussion of this effect is given in the first part of this section. The 
second part will discuss inverse beta decay. 
 

The average attractive force between a nucleus and an electron is, 
 
 
(5.1) 
 
 
where e is the electron charge, Ze is the average nuclear charge, and rB,e is the 
average electron-nucleus distance. The average repulsive force between two 
electron is given as, 
 
 
(5.2) 
 
 
where re,e is the average electron-electron distance. Now, because of the decreased 
density of positively charged particles, 
 
  
(5.3) 
 
Combining eqs.(5.1), (5.2), and (5.3) gives, 
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(5.5) 
 
 
So, the net force is attractive, for Z > 1. This has the effect of lowering the pressure 
at a given density. However, this is only a small fraction of the degeneracy pressure, 
which can be shown as follows, 
 

The Fermi energy is given by eq.(3.65), and the electrostatic energy is given 
as, 
 
   
(5.6) 
 
 
Now using, 
 
 
(5.7) 
 
 
The result for the ratio of the Coulomb energy to the Fermi energy is, 
 
 
 
(5.8) 
 
 
 
Now using e = 4.80*10-10 (g1/2cm3/2s-1), me = 9.11*10-28 g, and using a density of 
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carbon, 
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So, the Coulomb energy is less than 1% of the Fermi energy. Although the 
correction to the pressure is small, it is significant, and results in a smaller radius, 
and a larger central density for a given mass. This is because the radius is very 
sensitive to changes in pressure, at high densities. 
 

Chandrasekhar's original model, with this small electrostatic correction, is 
still the standard model for white dwarf matter with a density between 104 g/cm3 
and 107 g/cm3. Below 104 g/cm3, the electrons can not be treated as a uniform gas, 
since shell effects become important. A statistical approximation for this low 
density case was carried out by Feynman, Metropolis, and Teller in 19499. 
 

At densities higher than 107 g/cm3, inverse beta decay must be considered. 
The reaction is, 
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Or, an electron and a proton yields a neutron and a neutrino. The minimum density 
for the onset of this reaction is found by setting the total energy of the electron and 
proton, equal to the total energy of the neutron. Since the baryons are non-
relativistic at this energy, their kinetic energies are not included. Thus, where mn is 
the neutron mass, and mp is the proton mass. 
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Substituting eq.(5.13) into eq.(5.12), and solving for ne gives, 
 
 
(5.14) 
 
 
where, mp = 1.673*10-24 g = 1.007593 a.m.u., and mn = 1.008982 a.m.u.. Now the 
density is given by,  
 
(5.15) 
 
 

If the star were composed of free neutrons and protons, a phase change 
would take place at this density. Most of the electrons would be absorbed, greatly 
reducing the pressure, and the star would collapse until pressure from degenerate 
neutrons halted the collapse. In reality, the situation is not that simple. The star 
contains baryons in discrete nuclei. A number of models have emerged to deal with 
this.  
 

In 1958, Harrison and Wheeler assumed that the star started as pure 56Fe, 
which would be the lowest energy state at low densities.10 They also used a 
continuous function for the mass of the nuclei. The result was that the equilibrium 
shifts towards heavier, more neutron rich nuclei, at higher densities. 
 

In 1961, Hamada and Salpeter5 improved on the model, by using discrete 
values for the nuclear masses.11 The result was a number of phase changes, from 
one nucleus to the next, as the star becomes more dense. Starting with the reaction 
56Fe to 62Ni, at about 8.1*106 g/cm3, and ending with 118Kr at about 4.4*1011 g/cm3.  
 

In 1971, Baym, Pethick and Sutherland, improved the formula slightly.12 
Their improvement involved using some better approximations. 
 

 These models all assume that the star can reach its lowest energy state. This 
may not be the case. Current stellar models suggest that stars that finish their lives 
as white dwarves, may have mostly carbon cores. And the reaction 12C to 12B to 
12Be does not take place until densities reach about 3.9*1010 g/cm3.  
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Another factor to consider, however, is that the star will under-go some 
Pycnonuclear reactions. These are reactions in which the pressure is used to 
overcome the coulomb repulsion of the nuclei. These reactions would continue to 
evolve the star towards heavier elements. However, current calculations suggest 
that the time for these reactions to take place is too long to have a major impact. So, 
most astrophysicists feel that the stars are likely to be mostly carbon. A small 
minority feel that the stars may be composed of heavier elements, like iron. 
 

All of the models predict some loss of pressure from inverse beta decay, 
which results in smaller radii, and larger central densities for a given mass. 
 

At about 4*1011 g/cm3, the models predict what is known as "neutron drip". 
This is the release of free neutrons from the nuclei. At these densities it becomes the 
lower energy state for the nuclei, instead of electron capture. From  about 4*1011 
g/cm3 to about 4*1012 g/cm3, the star is best described as nuclei, electrons and free 
neutrons in equilibrium. At higher densities, most of the pressure to support the star 
comes from degenerate neutrons, and the object is no longer described as a white 
dwarf, but instead, as a neutron star. The best models here treat the star as a 
degenerate neutron gas, in equilibrium with a small amount of electrons and 
protons. 
 

Finally, when general relativity is considered, instability sets in above some 
threshold density, leading to the collapse of a white dwarf to form a neutron star. 
This is dependent, however, on the composition of the star. For heavier nuclei, the 
instability will never take place. But for carbon stars, the instability occurs at 
densities below neutron drip, specifically, at about 2.65*1010 g/cm3. This may lead 
to the collapse of the star at these densities. 
 

In short, although the description of the star at high densities becomes very 
complicated, Chandrasekhar's result of a limiting mass for white dwarf stars, still 
remains intact.  



 
 39 

Appendix A - Polytropic Equation of State 
 

Eq.(3.22) is a polytropic equation of state. A polytropic process, is any 
process, in which the heat capacity remains constant, that is, 
 
  
(A.1) 
 
 
where Q is the heat content. It should be noted, that if C = 0, this is the special case 
of an adiabatic process, and if C is infinite, this is an isotropic process. In this 
section it will be shown that eq.(A.1) implies eq.(3.22). 
 

First, a few basic definitions, and thermodynamic relations are needed. The 
first law of thermodynamics can be written as, 
 
 (A.2) 
 
 
where, U is the internal energy. It can be given by, 
 
        
(A.3) 
 
CV, the heat capacity at constant volume, is defined as, 
 
 
(A.4) 
 
 
or, using eq.(A.2), and the fact that for an ideal gas CV depends only on T, 
 
 
(A.5) 
 
 
Also, the heat capacity at constant pressure is defined as, 
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(A.6) 
 
 
Finally, the ideal gas law is, 
 
 
(A.7) 
 
 
where, N is the total number of particles, and again n is the particle density, and V, 
the volume, related by, 
 
  
(A.8) 
 

Now, starting with eq.(A.2), and taking the partial derivative of both sides 
with respect to T, at constant pressure, gives, 
 
 
(A.9) 
 
 
Using the definitions in eqs.(A.5) and (A.6), gives, 
 
 
(A.10) 
 
 
and, using eq.(A.7), gives, 
 
 (A.11) 
 
 

Now, returning to the first law, eq.(A.2), and using the definition in eq.(A.1), 
gives, 
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(A.12) 
 
 
or, with eq.(A.3), 
 
 
(A.13) 
 
 

Now substituting eq.(A.7) into eq.(A.11) gives, 
 
  
(A.14) 
 
 
Combining eq.(A.13) and eq.(A.14) gives, 
 
  
(A.15) 
 
 
Now, the polytropic gamma is defined as, 
 
  
(A.16) 
 
 
and solving for CP, 
 
(A.17) 
 
 
Here, again, if C is 0, then gamma is just the adiabatic gamma, and if C is infinite, 
then gamma is 1, as is the case in an isotropic process. Now, substituting eq.(A.17) 
into eq.(A.15) gives, 
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(A.18) 
 
 
or, 
 
 
(A.19) 
 
 
Integrating gives, 
 
 
(A.20) 
 
 
or, 
 
 
(A.21) 
 
 
or, 
 
(A.22) 
 
 
Then, using eq.(A.7) gives, 
 
 
(A.23) 
 
 
or, 
 

V
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(A.24) 
 
or, using 
eq.(A.8), 
 
(A.25) 
 
 
or, using eq.(3.17), where now ne = n, and naming the constant K gives eq.(3.22). 
 
 
 (A.26) 

constant*n=P γ  

ργ
0K=P  
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Appendix B - The Lane-Emden Equation  
 

The Lane-Emden equation, of index n, is given as, 
 
   
(B.1) 
 
 
It only has analytic solutions for a few indexes of n. These are 0, 1, and 5. For n = 0 
the solution is, 
 
 
(B.2) 
 
 
For n = 1 the solution is, 
 
 
(B.3) 
 
 
And, for n = 5, the solution is, 
 
 
(B.4) 
 
 
 
For all other n, numerical methods must be used, and these results can be found in 
standard tables. For n greater than or equal to 5 there are no 0 values for theta. 
 

In the following pages Mathematica has been used to generate a plot of the 
function for various values of n. The plots start at theta = .0001 to avoid infinities at 
0, and the real part of the result is used for the plot, in order to remove infinitesimal 
imaginaries that the approximation introduces, and for n = 1/2, the graph was 
truncated, due to lack of memory. For n = 3/2, and n = 3, the indexes referenced in 
the main text, the standard table13 values for the first zeros, and the expression,  
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(B.5) 
 
 
were checked. Both the first zero, and the value of eq.(B.5) were found to be in 
agreement with the tabulated values.   
     
    
  
 

|)(| 1
2
1 ξθξ ′  
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